Hebb, DO The organization of behavior: A neuropsychological theory (Psychology Press, 1949).
Kandel, ER, Dudai, Y. & Mayford, MR The molecular and systems biology of memory. cell 157163–186 (2014).
Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 8820–32 (2015).
Hernandez, PJ & Abel, T. The role of protein synthesis in memory consolidation: Progress amid decades of debate. Neurobiol. Learn. meme. 89293–311 (2008).
Goto, A. et al. Gradual synaptic plasticity events control the early phase of memory consolidation. Science 374857–863 (2021).
Wally, ME, Nomoto, M., Abdou, K., Murayama, E. & Inokuchi, K. A trace of short-term memory persists for days in the mouse hippocampus. Comm. Biol. 51168 (2022).
Izquierdo, LA et al. Molecular pharmacological analysis of short- and long-term memory. Cell. Mol. Neurobiol. 22269–287 (2002).
Sutton, MA, Masters, SE, Bagnall, MW & Carew, TJ Molecular mechanisms underlying a unique intermediate phase of memory Aplysia. Neuron 31143–154 (2001).
Gomis-González, M. et al. Protein kinase C-γ knockout mice show impaired hippocampal short-term memory while long-term memory is preserved. Mol. Neurobiol. 58617–630 (2021).
Trannoy, S., Redt-Clouet, C., Dura, J.-M. & Preat, T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 211647–1653 (2011).
Izquierdo, I. et al. The mechanisms for storage types differ. Nature 393635-636 (1998).
Silva, AJ, Paylor, R., Wehner, JM & Tonegawa, S. Impaired spatial learning in α-calcium calmodulin kinase II mutant mice. Science 257206-211 (1992).
Giese, KP, Fedorov, NB, Filipkowski, RK & Silva, AJ Autophosphorylation at Thr286 of α-calcium-calmodulin kinase II in LTP and learning. Science 279870-873 (1998).
Yamagata, Y. et al. Kinase-dead knock-in mice demonstrate an essential role for the kinase activity of Ca2+/Calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 297607–7618 (2009).
Irvine, EE, Vernon, J. & Giese, KP AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat. Neurosci. 8411–412 (2005).
Kimura, R., Silva, AJ & Ohno, M. Autophosphorylation of αCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn. meme. 15837–843 (2008).
Yamagata, Y., Yanagawa, Y. & Imoto, K. Differential involvement of kinase activity of Ca2+/Calmodulin-dependent protein kinase IIα in hippocampus- and amygdala-dependent memory detected by kinase-dead knock-in mice. eNeuro 5ENEURO.0133-18.2018 (2018).
Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity is revealed by the optogenetic kinase inhibitor. Neuron 9437–47.e5 (2017).
Chang, J.-Y. et al. Autophosphorylation of CaMKII is required for optimal integration of Ca2+ Signals during LTP induction but not maintenance. Neuron 94800–808.e4 (2017).
Coultrap, S.J. et al. Autonomous CaMKII mediates both LTP and LTD using a differential substrate site selection mechanism. Cell representatives. 6431–437 (2014).
McKernan, MG & Shinnick-Gallagher, P. Fear conditioning induces sustained potentiation of synaptic currents in vitro. Nature 390607-611 (1997).
Irvine, E. E. et al. Characteristics of contextual memory formed in the absence of αCaMKII autophosphorylation. Mol. Brain 48 (2011).
Radwanska, K. et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc. Natl Acad. Science. USA 10818471–18475 (2011).
Giese, KP, Aziz, W., Kraev, I. & Stewart, MG Generation of multinerved dendritic spines as a novel mechanism of long-term memory formation. Neurobiol. Learn. meme. 12448–51 (2015).