close
close
Formation of long-term memory without short-term memory through CaMKII inhibition

  • Hebb, DO The organization of behavior: A neuropsychological theory (Psychology Press, 1949).

  • Kandel, ER, Dudai, Y. & Mayford, MR The molecular and systems biology of memory. cell 157163–186 (2014).

    Article CAS PubMed Google Scholar

  • Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 8820–32 (2015).

    Article CAS PubMed Google Scholar

  • Hernandez, PJ & Abel, T. The role of protein synthesis in memory consolidation: Progress amid decades of debate. Neurobiol. Learn. meme. 89293–311 (2008).

    Article CAS PubMed Google Scholar

  • Goto, A. et al. Gradual synaptic plasticity events control the early phase of memory consolidation. Science 374857–863 (2021).

    Article CAS PubMed Google Scholar

  • Wally, ME, Nomoto, M., Abdou, K., Murayama, E. & Inokuchi, K. A trace of short-term memory persists for days in the mouse hippocampus. Comm. Biol. 51168 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Izquierdo, LA et al. Molecular pharmacological analysis of short- and long-term memory. Cell. Mol. Neurobiol. 22269–287 (2002).

    Article CAS PubMed Google Scholar

  • Sutton, MA, Masters, SE, Bagnall, MW & Carew, TJ Molecular mechanisms underlying a unique intermediate phase of memory Aplysia. Neuron 31143–154 (2001).

    Article CAS PubMed Google Scholar

  • Gomis-González, M. et al. Protein kinase C-γ knockout mice show impaired hippocampal short-term memory while long-term memory is preserved. Mol. Neurobiol. 58617–630 (2021).

    Article PubMed Google Scholar

  • Trannoy, S., Redt-Clouet, C., Dura, J.-M. & Preat, T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 211647–1653 (2011).

    Article CAS PubMed Google Scholar

  • Izquierdo, I. et al. The mechanisms for storage types differ. Nature 393635-636 (1998).

    Article CAS PubMed Google Scholar

  • Silva, AJ, Paylor, R., Wehner, JM & Tonegawa, S. Impaired spatial learning in α-calcium calmodulin kinase II mutant mice. Science 257206-211 (1992).

    Article CAS PubMed Google Scholar

  • Giese, KP, Fedorov, NB, Filipkowski, RK & Silva, AJ Autophosphorylation at Thr286 of α-calcium-calmodulin kinase II in LTP and learning. Science 279870-873 (1998).

    Article CAS PubMed Google Scholar

  • Yamagata, Y. et al. Kinase-dead knock-in mice demonstrate an essential role for the kinase activity of Ca2+/Calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 297607–7618 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Irvine, EE, Vernon, J. & Giese, KP AlphaCaMKII autophosphorylation contributes to rapid learning but is not necessary for memory. Nat. Neurosci. 8411–412 (2005).

    Article CAS PubMed Google Scholar

  • Kimura, R., Silva, AJ & Ohno, M. Autophosphorylation of αCaMKII is differentially involved in new learning and unlearning mechanisms of memory extinction. Learn. meme. 15837–843 (2008).

    Article PubMed PubMed Central Google Scholar

  • Yamagata, Y., Yanagawa, Y. & Imoto, K. Differential involvement of kinase activity of Ca2+/Calmodulin-dependent protein kinase IIα in hippocampus- and amygdala-dependent memory detected by kinase-dead knock-in mice. eNeuro 5ENEURO.0133-18.2018 (2018).

  • Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity is revealed by the optogenetic kinase inhibitor. Neuron 9437–47.e5 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Chang, J.-Y. et al. Autophosphorylation of CaMKII is required for optimal integration of Ca2+ Signals during LTP induction but not maintenance. Neuron 94800–808.e4 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Coultrap, S.J. et al. Autonomous CaMKII mediates both LTP and LTD using a differential substrate site selection mechanism. Cell representatives. 6431–437 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • McKernan, MG & Shinnick-Gallagher, P. Fear conditioning induces sustained potentiation of synaptic currents in vitro. Nature 390607-611 (1997).

    Article CAS PubMed Google Scholar

  • Irvine, E. E. et al. Characteristics of contextual memory formed in the absence of αCaMKII autophosphorylation. Mol. Brain 48 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  • Radwanska, K. et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc. Natl Acad. Science. USA 10818471–18475 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  • Giese, KP, Aziz, W., Kraev, I. & Stewart, MG Generation of multinerved dendritic spines as a novel mechanism of long-term memory formation. Neurobiol. Learn. meme. 12448–51 (2015).

    Article CAS PubMed Google Scholar

  • Leave a Reply

    Your email address will not be published. Required fields are marked *